RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK

نویسندگان

  • Amotz Ziv-Av
  • Nissim David Giladi
  • Hae Kyung Lee
  • Simona Cazacu
  • Susan Finniss
  • Cunli Xiang
  • Maor H. Pauker
  • Mira Barda-Saad
  • Laila Poisson
  • Chaya Brodie
چکیده

Glioblastoma (GBM) are characterized by increased invasion into the surrounding normal brain tissue. RTVP-1 is highly expressed in GBM and regulates the migration and invasion of glioma cells. To further study RTVP-1 effects we performed a pull-down assay using His-tagged RTVP-1 followed by mass spectrometry and found that RTVP-1 was associated with the actin polymerization regulator, N-WASP. This association was further validated by co-immunoprecipitation and FRET analysis. We found that RTVP-1 increased cell spreading, migration and invasion and these effects were at least partly mediated by N-WASP. Another protein which was found by the pull-down assay to interact with RTVP-1 is hnRNPK. This protein has been recently reported to associate with and to inhibit the effect of N-WASP on cell spreading. hnRNPK decreased cell migration, spreading and invasion in glioma cells. Using co-immunoprecipitation we validated the interactions of hnRNPK with N-WASP and RTVP-1 in glioma cells. In addition, we found that overexpression of RTVP-1 decreased the association of N-WASP and hnRNPK. In summary, we report that RTVP-1 regulates glioma cell spreading, migration and invasion and that these effects are mediated via interaction with N-WASP and by interfering with the inhibitory effect of hnRNPK on the function of this protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cells Regulates the Growth, Survival, and Invasion of Glioma Protein-1 (RTVP-1) Is Overexpressed in Gliomas and Related to Testes-Specific, Vespid, and Pathogenesis

In this study, we examined the expression and functions of related to testes-specific, vespid, and pathogenesis protein 1 (RTVP-1) in glioma cells. RTVP-1 was expressed in high levels in glioblastomas, whereas its expression in low-grade astrocytomas and normal brains was very low. Transfection of glioma cells with small interfering RNAs targeting RTVP-1 decreased cell proliferation in all the ...

متن کامل

Related to testes-specific, vespid, and pathogenesis protein-1 (RTVP-1) is overexpressed in gliomas and regulates the growth, survival, and invasion of glioma cells.

In this study, we examined the expression and functions of related to testes-specific, vespid, and pathogenesis protein 1 (RTVP-1) in glioma cells. RTVP-1 was expressed in high levels in glioblastomas, whereas its expression in low-grade astrocytomas and normal brains was very low. Transfection of glioma cells with small interfering RNAs targeting RTVP-1 decreased cell proliferation in all the ...

متن کامل

RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted...

متن کامل

NEDD4-1 Regulates Migration and Invasion of Glioma Cells through CNrasGEF Ubiquitination In Vitro

Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultu...

متن کامل

Neural Wiskott-Aldrich syndrome protein is involved in hepatocyte growth factor-induced migration, invasion, and tubulogenesis of epithelial cells.

Neural Wiskott-Aldrich syndrome protein (N-WASP), a member of the WASP family, regulates reorganization of the actin cytoskeleton through activation of the Arp2/3 complex. To date, most studies of N-WASP have focused on intracellular and morphological phenomena, such as vesicle transport and filopodium formation. We investigated the importance of N-WASP in epithelial morphogenesis, using Madin-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015